Anomaly-based intrusion detection: challenges and possible strategies from unknowns to APT detection

## Andrea Ceccarelli

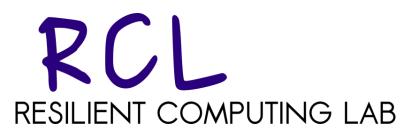
with the contribution of:

A. Bondavalli, T. Puccetti, T. Zoppi, and BsC and MsC students from the University of Florence.



universită degli studi FIRENZE **DIMAI** 

DIPARTIMENTO DI MATEMATICA E INFORMATICA "ULISSE DINI"







Ministero dell'Università e della Ricerca





### **My introduction**

Computer scientist with +15 years of experience in the design and evaluation of dependable and secure systems RESILIENT COMPUTING LAB

https://rcl.unifi.it

With case studies from railway, automotive, smart grid, industrial automation, software-intensive systems

Not a «machine learning guy» Enabling technology to reach our goal





**Presentation Outline** 

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
  - The role of DNNs
  - Detection of unknown attacks (zero-days)
  - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats



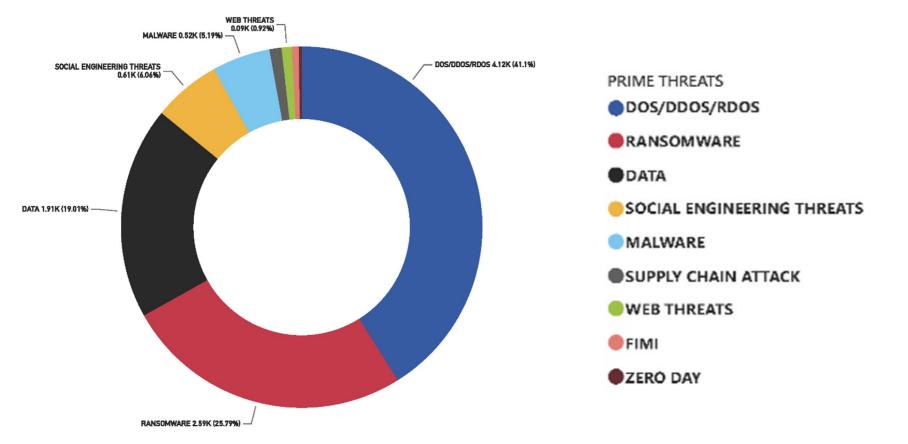
**Presentation Outline** 

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
  - The role of DNNs
  - Detection of unknown attacks (zero-days)
  - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats



# ENISA's Threat Landscape - analyzed incidents by threat type

## Violations to confidentiality, availability, integrity



https://www.enisa.europa.eu/publications/enisa-threat-landscape-2024



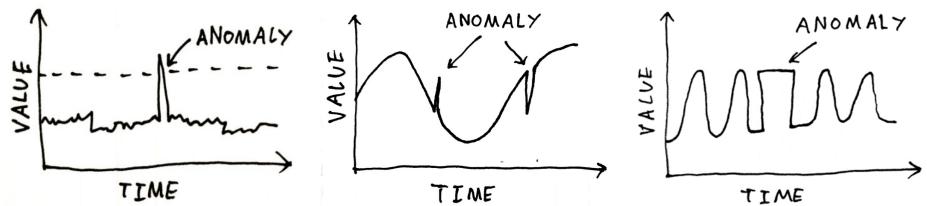
our focus!

How to defend

#### Means to realize intrusion detections: Rule-based, Invariant-Based, Signature-based



Anomaly-based (under the underlying assumption that attacks have a visible effect on monitored system indicators)



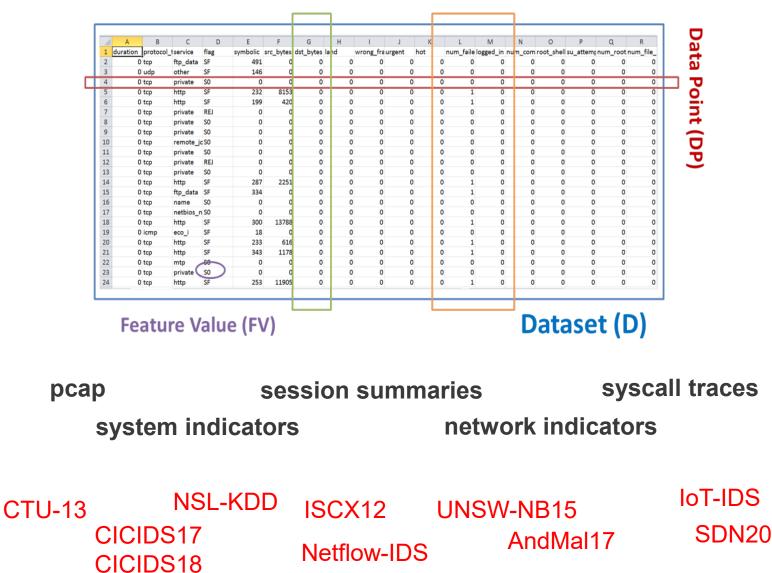
6



# It is just binary classification on tabular data

Feature (F)

Feature Set (FS)



Usually needs shuffling! (loss of context?)



#### **Need ad-hoc solutions?**

|                  | Malware                  | Web Attack               | Web<br>Application                  | Spam /<br>Phishing | (D)Dos                       | <u>BotNet</u> | Data Breaches               |
|------------------|--------------------------|--------------------------|-------------------------------------|--------------------|------------------------------|---------------|-----------------------------|
| NSL-KDD          | u2r                      |                          | r2l                                 |                    | DoS                          |               | Probe                       |
| CTU-13<br>ISCX12 |                          | BruteForce               |                                     |                    | DoS, DDoS                    | BotNet        | Infiltration                |
| UNSW-NB15        | Worms                    | Fuzzers                  | Backdoor,<br>Exploits,<br>Shellcode |                    | DoS                          |               | Analysis,<br>Reconnaissance |
| UGR16            |                          |                          |                                     | Blacklist,<br>Spam | DoS                          | BotNet        | Scan                        |
| NGIDS-DS         | Malware,<br>Worms        |                          | Backdoor,<br>Exploits,<br>Shellcode |                    | DoS                          |               | Reconnaissance              |
| Netflow-IDS      |                          |                          |                                     | Mailbomb           | Neptune,<br><u>Portsweep</u> |               |                             |
| AndMal17         | Ransomware,<br>Scareware |                          |                                     | SMS, Adware        |                              |               |                             |
| CIDDS-001        |                          | BruteForce               |                                     |                    | DoS<br>DoS                   |               | PortScan, PingScar          |
| CICIDS17         |                          | BruteForce               |                                     |                    | (Slowloris,<br>Goldeneye)    |               | PortScan                    |
| CICIDS18         |                          | BruteForce<br>(FTP, SSH) |                                     |                    | DoS, DDoS                    | Bot           | Infiltration                |
| SDN20            |                          | BruteForce               | Exploits                            |                    | DoS, DDoS                    |               | Probe                       |

Catillo, Marta, et al. "Transferability of machine learning models learned from public intrusion detection datasets: the CICIDS2017 case study." Software Quality Journal 30.4 (2022): 955-981.

T. Zoppi, et al. "Towards a general model for intrusion detection: An exploratory study." *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*. Cham: Springer Nature Switzerland, 2022.



**Presentation Outline** 

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
  - The role of DNNs
  - Detection of unknown attacks (zero-days)
  - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats



Let's start training and testing!

## **Supervised**: labels are used when training XGBoost, Random Forests, LDA, Knn, ExtraTrees, ...

#### **Unsupervised:** no labels during training Isolation Forest, FastAbod, K-means, ODIN, ...

|              | Known atta | ks<br>Unknown          |  |
|--------------|------------|------------------------|--|
|              | Events     | Events                 |  |
| Supervised   | Very Good! | <b>Potentially Bad</b> |  |
| Unsupervised | Average    |                        |  |





# Nowadays DNNs are very popular as they work well in many applications

#### However, efficacy unclear for tabular data

Shwartz-Ziv, Ravid, and Amitai Armon. "Tabular data: Deep learning is not all you need." Information Fusion 81 (2022): 84-90.

Ye, Han-Jia, et al. "A closer look at deep learning on tabular data." *arXiv preprint arXiv:2407.00956* (2024).



T. Zoppi, et al. "Anomaly-based error and intrusion detection in tabular data: no DNN outperforms tree-based classifiers." Future Generation Computer Systems 160 (2024): 951-965.

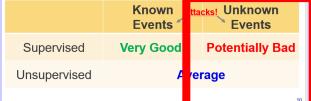




- 23 datasets, attacks known at training time DNN-based supervised algorithms FastAI, TabNet, NODE, GATE, ...
  - Including image-based DNNs exploiting DeepInsight
- Tree-based classifiers *Random Forests*, eXtreme Gradient Boosting (XGBoost) or Extra Trees outperform DNNs
  - -also easier to fine-tune, and understand
  - less time and resources to learn their model
- True independently on the dimension of the training set



#### With unknowns?



Research and Practice found ways to defend against specific attacks

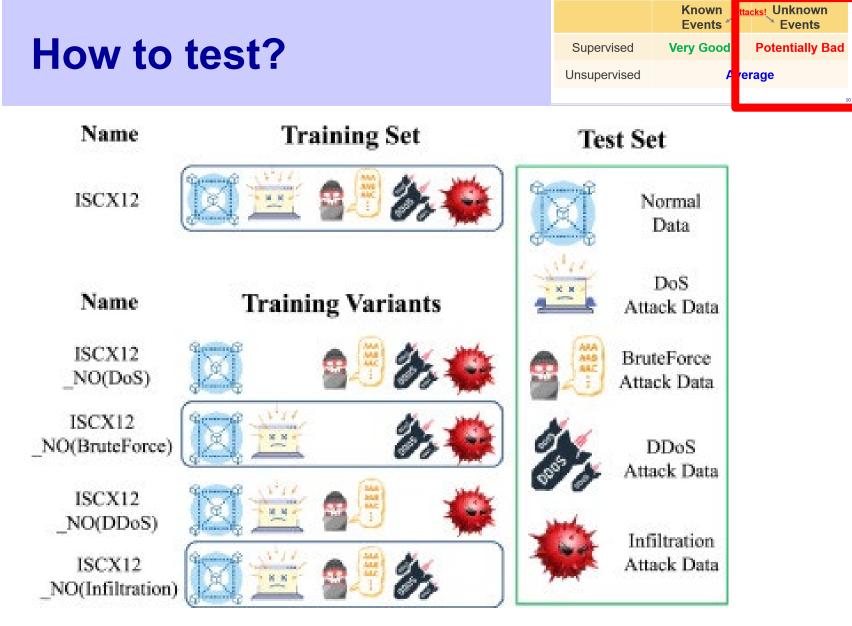
Mostly rule, signature-based or supervised (tree-based) learning





But what about with zero days, variants, ... ? No rule / signature available Anomaly detectors much less efficient





Zoppi, Tommaso, et al. "Which algorithm can detect unknown attacks? Comparison of supervised, unsupervised and meta-learning algorithms for intrusion detection." *Computers & Security* 127 (2023): 103107.

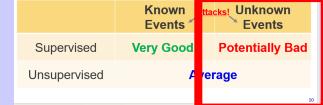
| JII.    | A STUD      |        |                 |          |             |            | Kno<br>Eve |                    |   |
|---------|-------------|--------|-----------------|----------|-------------|------------|------------|--------------------|---|
| LOREN   | <b>Data</b> | sets V | <b>'ariants</b> | 1        |             | Supervised | Very G     | ood Potentially Ba | b |
| Star FL |             |        |                 |          | Unsupervise | ed         | Arerage    |                    |   |
| ~       | TALERST     |        |                 |          |             |            |            | 10                 |   |
|         | Nieme       | Veen   | # Data          | Features |             | Attacks    |            | #                  |   |
|         | Name        | Year   | Points          | Ord.     | Cat.        | #          | %          | Variants           |   |
|         | ADFANet     | 2015   | 132 002         | 5        | 6           | 3          | 11.3       | 3                  |   |
|         | AndMal17    | 2017   | 100 000         | 77       | 5           | 4          | 15.5       | 4                  |   |
|         | CICIDS17    | 2017   | 500 000         | 77       | 5           | 5          | 79.7       | 5                  |   |
|         | CICIDS18    | 2018   | 200 000         | 77       | 5           | 8          | 26.2       | 8                  |   |
|         | CIDDS       | 2015   | 400 000         | 5        | 7           | 4          | 14.4       | 4                  |   |
|         | IoT-IDS     | 2019   | 210 425         | 8        | 1           | 8          | 42.3       | 8                  |   |
|         | ISCX12      | 2012   | 600 000         | 4        | 10          | 4          | 43.5       | 4                  |   |
|         | NSLKDD      | 2009   | 148 516         | 37       | 5           | 4          | 40.7       | 4                  |   |
|         | SDN20       | 2020   | 205 167         | 63       | 5           | 5          | 66.6       | 5                  |   |
|         | UGR16       | 2016   | 207 256         | 4        | 6           | 5          | 3.3        | 5                  |   |
|         | UNSW-NB15   | 2015   | 165 461         | 38       | 6           | 8          | 6.5        | 8                  |   |

#### Some of the attack datasets we used

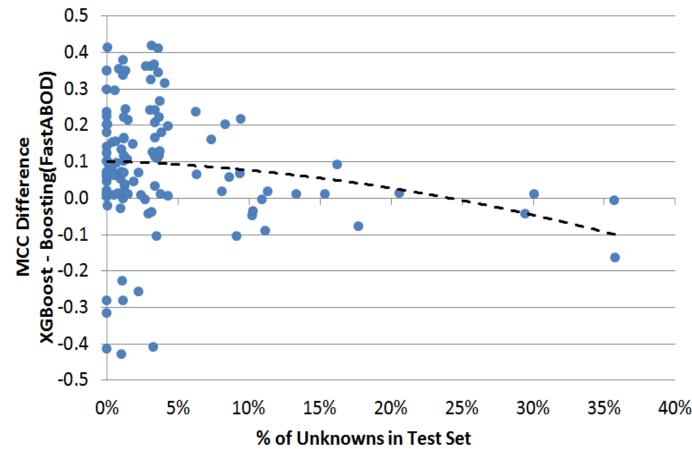
• the more attacks a dataset contains, the more variants



#### ... and all the data!



#### Differences between the best supervised and unsupervised algorithm, when varying the number of unknowns

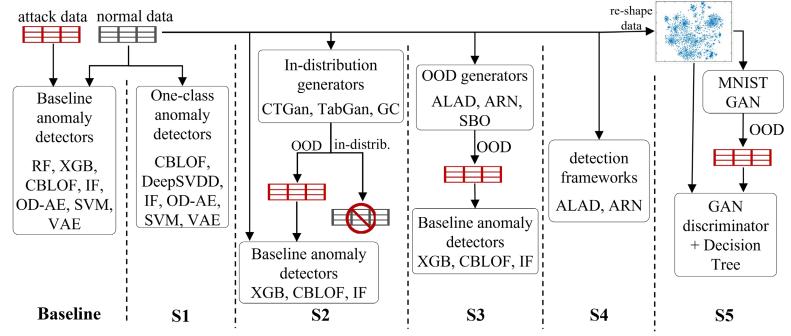




#### If zero knowledge?

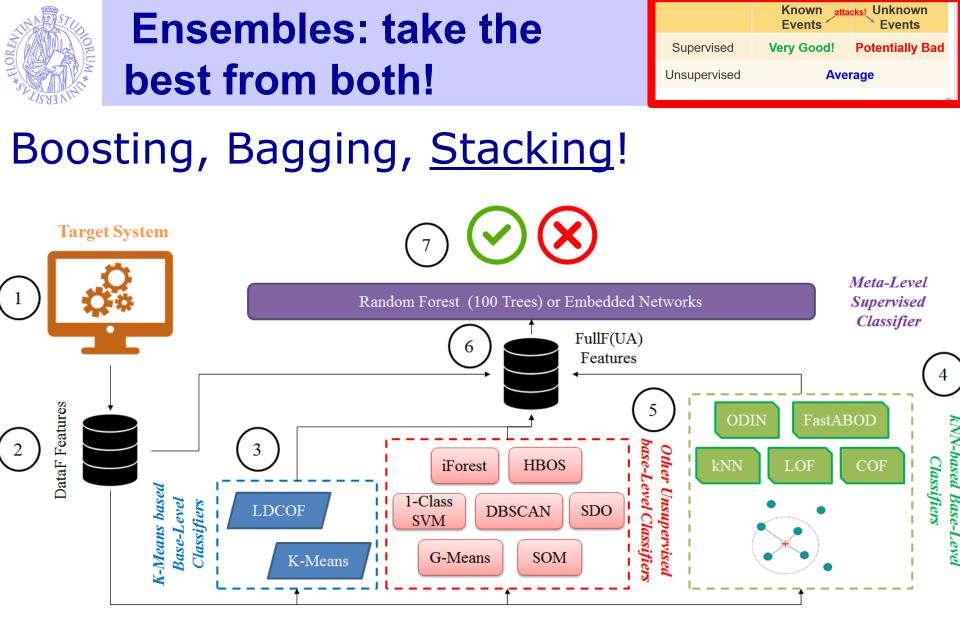


#### Difficult to obtain good attack data time-consuming, expensive, incomplete, outdated, etc.



#### But no alternatives- aside when few easy features

A. Ceccarelli, and T. Zoppi. "Intrusion detection without attack knowledge: generating out-of-distribution tabular data." ISSRE 2023

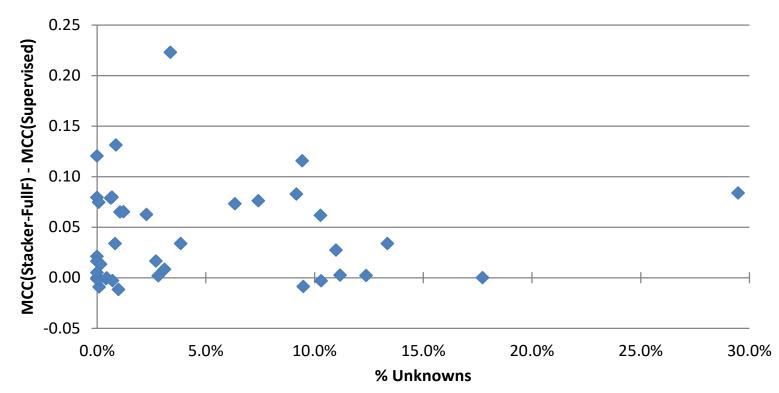


Zoppi, T., Ceccarelli, A. (2021) "Prepare for trouble and make it double! Supervised–Unsupervised stacking for anomaly-based intrusion detection." *Journal of Network and Computer Applications* 189: 103106.



#### Comparison between MCC Stacker vs supervised

Each dataset, we take the best supervised algorithm





**Presentation Outline** 

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
  - The role of DNNs
  - Detection of unknown attacks (zero-days)
  - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats



#### Metrics that makes us happy!

anomaly detection and tabular data in top dependability and security venues

| Paper                  | Venue  | Metrics                        |
|------------------------|--------|--------------------------------|
| Jha et al. 2022        | DSN    | P, R, F1, Lead Detection Time. |
| Wang et al. 2022       | DSN    | P, R, F1                       |
| Dayaratne et al. 2022  | DSN    | P, R,F1, FPR                   |
| Alharthi et al. 2021   | DSN    | P, R, F1, MCC                  |
| Yuan et al. 2021       | DSN    | P, R, TPR, FPR                 |
| Xu et al. 2021         | DSN    | P, R, F1                       |
| Zhao et al. 2019       | DSN    | A                              |
| Wang et al. 2022       | ISSRE  | P, R, F1                       |
| Zhang et al. 2021      | ISSRE  | P, R, F1                       |
| Jia et al. 2021        | ISSRE  | P, R                           |
| Zhang et al. 2021      | ISSRE  | P, R, F1,ROC                   |
| Alsaheel et al. 2021   | USENIX | P, R F1, ROC                   |
| Chen et al. 2021       | USENIX | R, avg. time                   |
| Downing et al. 2021    | USENIX | P, R, FPR, ROC                 |
| Izhikevich et al. 2021 | USENIX | A, proc. time                  |
| Fu et al. 2021         | USENIX | P, R, FPR                      |
| Tang et al. 2021       | USENIX | TPR, FPR                       |

What is usually studied are anomalies represented by individual data points, observed in datasets composed by hours of normal concatenated with hours of attacks.

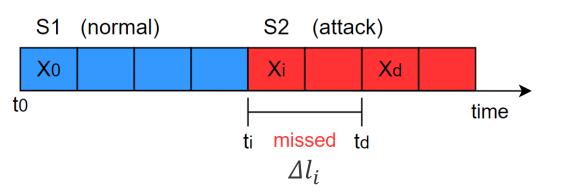


How long was the attacker into the system before being detected?

Or: given a complex attack, how long did it take to detect it?

• Average Latency = 
$$\Delta L = \frac{\sum_{i=0}^{N} \Delta l_i}{N}$$

Sequence Detection Rate SDR (as there is the case in which x<sub>d</sub> never occur)

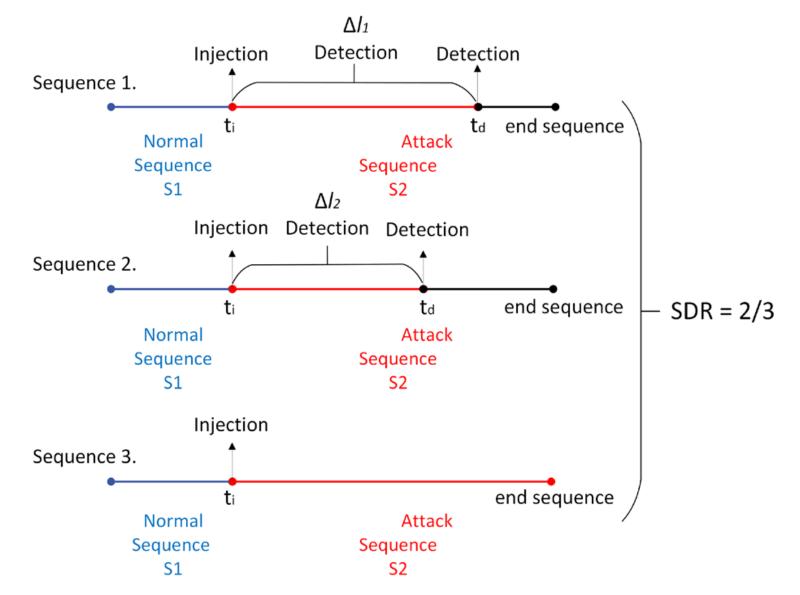


Tommaso Puccetti and Andrea Ceccarelli , Detection Latencies of Anomaly Detectors: An Overlooked Perspective?, *ISSRE 2024* 

Puccetti, T., Nardi, S., Cinquilli, C., Zoppi, T., & Ceccarelli, A. (2024). ROSPaCe: Intrusion Detection Dataset for a ROS2-Based Cyber-Physical System and IoT Networks. *Scientific Data*, *11*(1), 481.

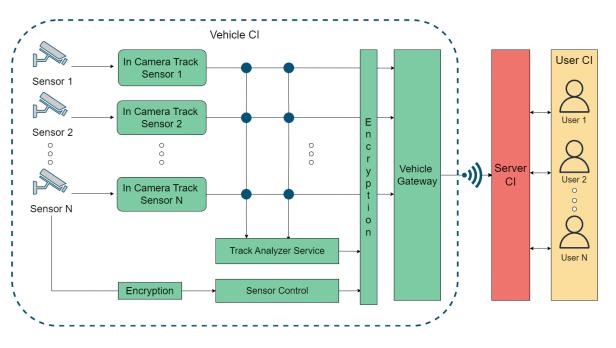


#### A bit more on the SDR



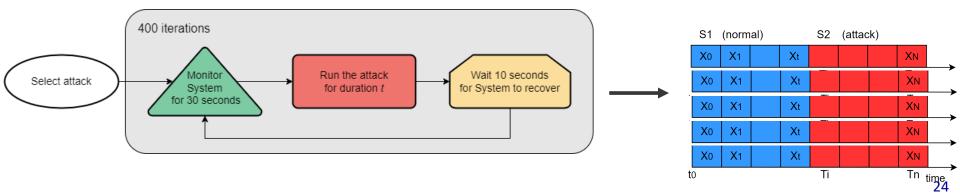


#### **ROSPaCe data collection procedure**



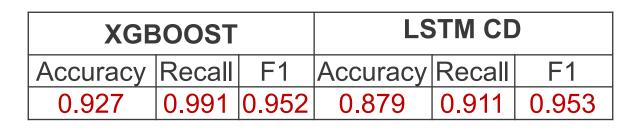
#### 6 different attacks:

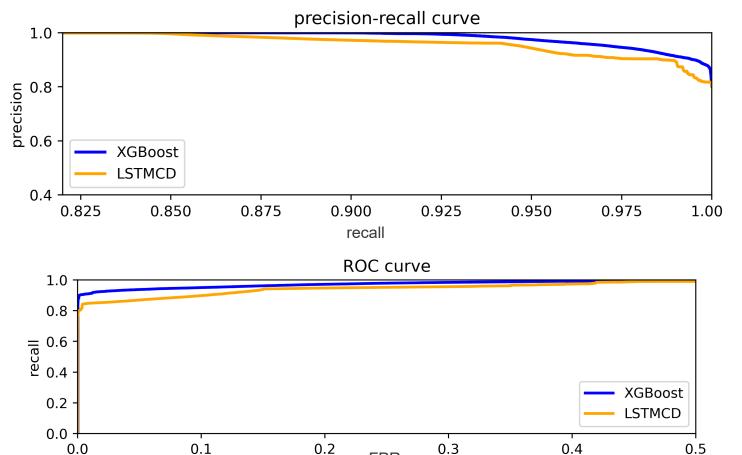
- 2 discovery attacks
- 4 DoS attacks





#### Some results: with «traditional» metrics



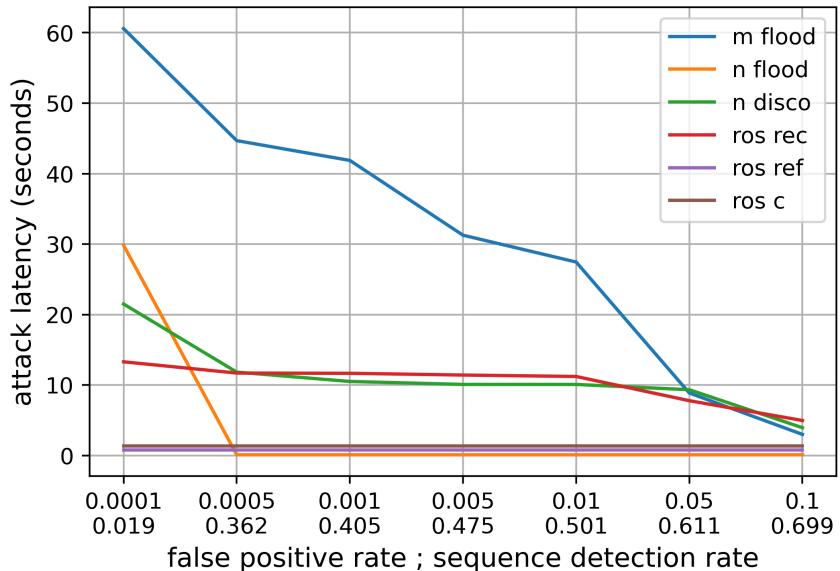


**FPR** 



#### What about average latency?

#### XGBoost on ROSPaCe





**Presentation Outline** 

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
  - The role of DNNs
  - Detection of unknown attacks (zero-days)
  - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats



**Advanced**, well-financed attack campaign with a full spectrum of intelligence-gathering techniques.

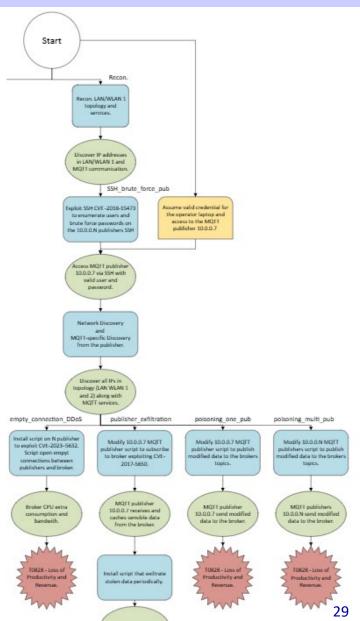
- **Persistent**, from highly determined and persistent attackers. One of the attackers' goals is maintaining long-term access to the target.
- **Threats** executed by coordinated human actions rather than mindless automated code.





#### **Anomaly detectors for APTs**

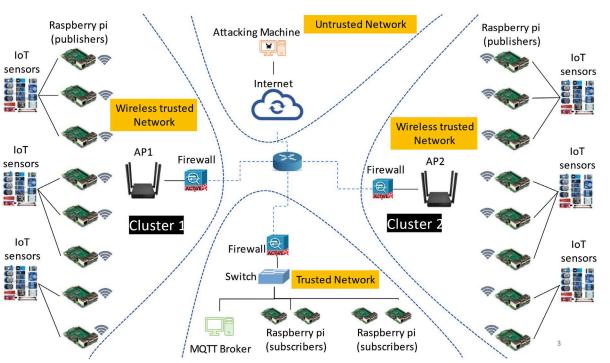
- A shift of perspective: – not just «detect an attack», but
  - interrupt the attack path before the goal is reached
  - What is missing with respect to everything we have seen:
  - Above all, datasets!
  - Then, algorithms for time series exists (even if *maybe* not so much applied to IDS *yet*)





#### Let's try to build a dataset

- Industrial network traffic dataset DoS/DDoS-MQTT-IoT (publish/subscribe)
- Simulate Network environment using DDoShield-IoT
  - Can replay dataset .pcap file and simulate network normal behavior <- and we can craft attack!



Alatram, Alaa, et al. "DoS/DDoS-MQTT-IoT: A dataset for evaluating intrusions in IoT networks using the MQTT protocol." *Computer Networks* 231 (2023): 109809.

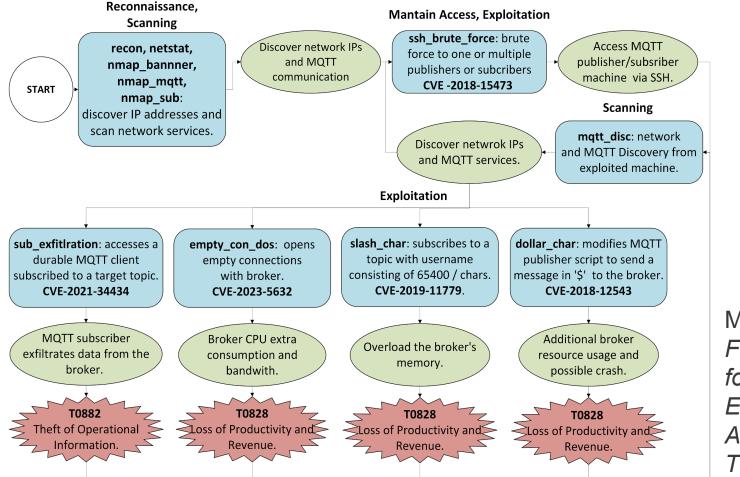
De Vivo, Simona, et al. "DDoShield-IoT: A Testbed for Simulating and Lightweight Detection of IoT Botnet DDoS Attacks." 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2024.



#### **Design and implement the attack paths**

### MITRE | ATT&CK°



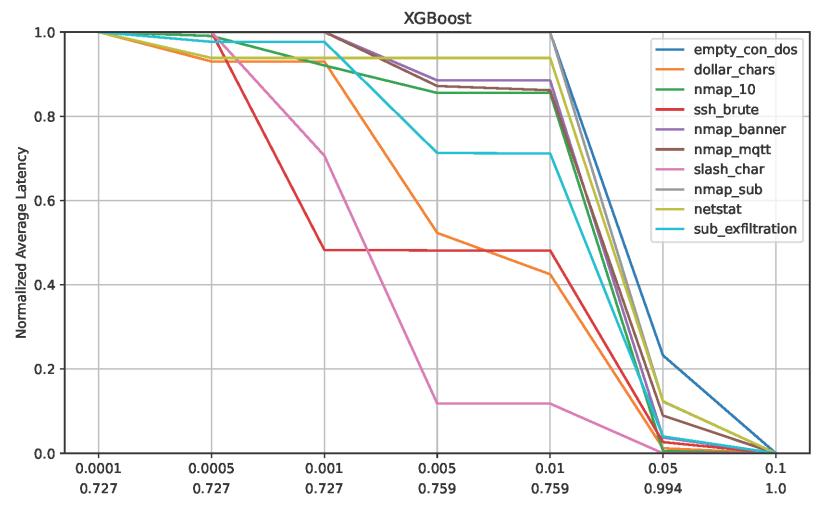


MUR FLEGREA -Federated Learning for Generative Emulation of Advanced Persistent Threats



**Train-test; analyze results** 

#### not good but just our first try



False Positive Rate ; Sequence Detection Rate



### (Finally!) Wrapping Up...





## (Finally!) Wrapping Up...

#### Anomaly-based IDS

- -(only?) alternative to the signature/rule-based model
- Promising against unknowns
- Not easy to deploy/customize –Target-specific attack datasets needed!
- And worst yet to come? – APT as the new challenge to IDSs