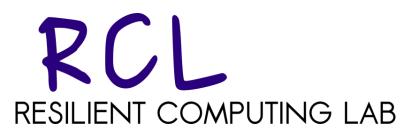
Anomaly-based intrusion detection: challenges and possible strategies from unknowns to APT detection

Andrea Ceccarelli


with the contribution of:

A. Bondavalli, T. Puccetti, T. Zoppi, and BsC and MsC students from the University of Florence.

universită degli studi FIRENZE **DIMAI**

DIPARTIMENTO DI MATEMATICA E INFORMATICA "ULISSE DINI"

Ministero dell'Università e della Ricerca

My introduction

Computer scientist with +15 years of experience in the design and evaluation of dependable and secure systems RESILIENT COMPUTING LAB

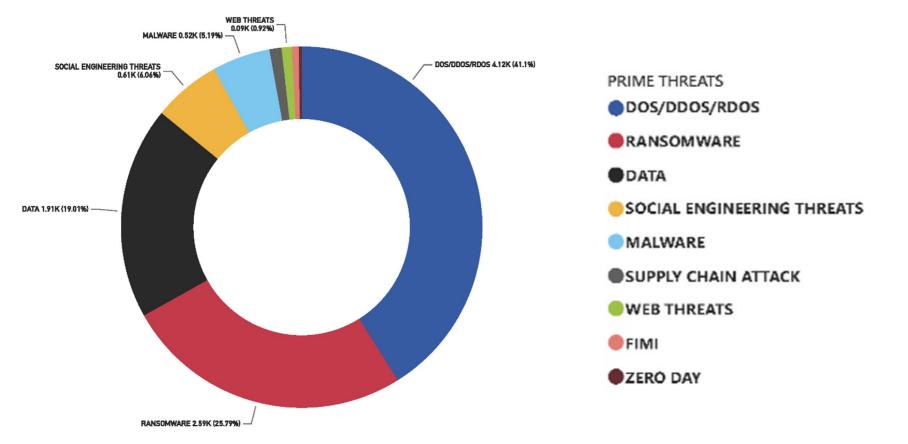
https://rcl.unifi.it

With case studies from railway, automotive, smart grid, industrial automation, software-intensive systems

Not a «machine learning guy» Enabling technology to reach our goal

Presentation Outline

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
 - The role of DNNs
 - Detection of unknown attacks (zero-days)
 - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats

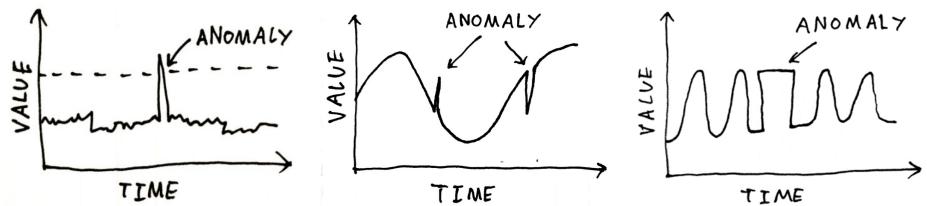

Presentation Outline

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
 - The role of DNNs
 - Detection of unknown attacks (zero-days)
 - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats

ENISA's Threat Landscape - analyzed incidents by threat type

Violations to confidentiality, availability, integrity

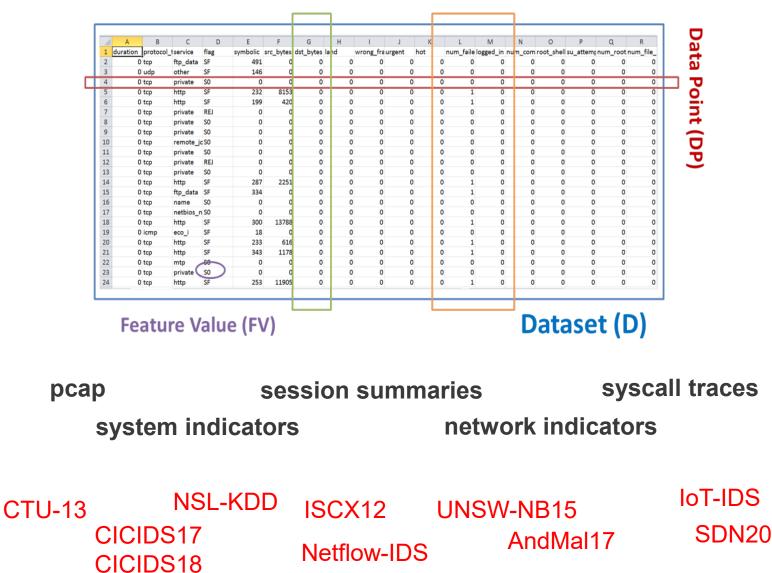
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2024


our focus!

How to defend

Means to realize intrusion detections: Rule-based, Invariant-Based, Signature-based

Anomaly-based (under the underlying assumption that attacks have a visible effect on monitored system indicators)


6

It is just binary classification on tabular data

Feature (F)

Feature Set (FS)

Usually needs shuffling! (loss of context?)

Need ad-hoc solutions?

	Malware	Web Attack	Web Application	Spam / Phishing	(D)Dos	<u>BotNet</u>	Data Breaches
NSL-KDD	u2r		r2l		DoS		Probe
CTU-13 ISCX12		BruteForce			DoS, DDoS	BotNet	Infiltration
UNSW-NB15	Worms	Fuzzers	Backdoor, Exploits, Shellcode		DoS		Analysis, Reconnaissance
UGR16				Blacklist, Spam	DoS	BotNet	Scan
NGIDS-DS	Malware, Worms		Backdoor, Exploits, Shellcode		DoS		Reconnaissance
Netflow-IDS				Mailbomb	Neptune, <u>Portsweep</u>		
AndMal17	Ransomware, Scareware			SMS, Adware			
CIDDS-001		BruteForce			DoS DoS		PortScan, PingScar
CICIDS17		BruteForce			(Slowloris, Goldeneye)		PortScan
CICIDS18		BruteForce (FTP, SSH)			DoS, DDoS	Bot	Infiltration
SDN20		BruteForce	Exploits		DoS, DDoS		Probe

Catillo, Marta, et al. "Transferability of machine learning models learned from public intrusion detection datasets: the CICIDS2017 case study." Software Quality Journal 30.4 (2022): 955-981.

T. Zoppi, et al. "Towards a general model for intrusion detection: An exploratory study." *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*. Cham: Springer Nature Switzerland, 2022.

Presentation Outline

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
 - The role of DNNs
 - Detection of unknown attacks (zero-days)
 - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats

Let's start training and testing!

Supervised: labels are used when training XGBoost, Random Forests, LDA, Knn, ExtraTrees, ...

Unsupervised: no labels during training Isolation Forest, FastAbod, K-means, ODIN, ...

	Known atta	ks Unknown	
	Events	Events	
Supervised	Very Good!	Potentially Bad	
Unsupervised	Average		



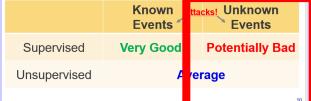
Nowadays DNNs are very popular as they work well in many applications

However, efficacy unclear for tabular data

Shwartz-Ziv, Ravid, and Amitai Armon. "Tabular data: Deep learning is not all you need." Information Fusion 81 (2022): 84-90.

Ye, Han-Jia, et al. "A closer look at deep learning on tabular data." *arXiv preprint arXiv:2407.00956* (2024).

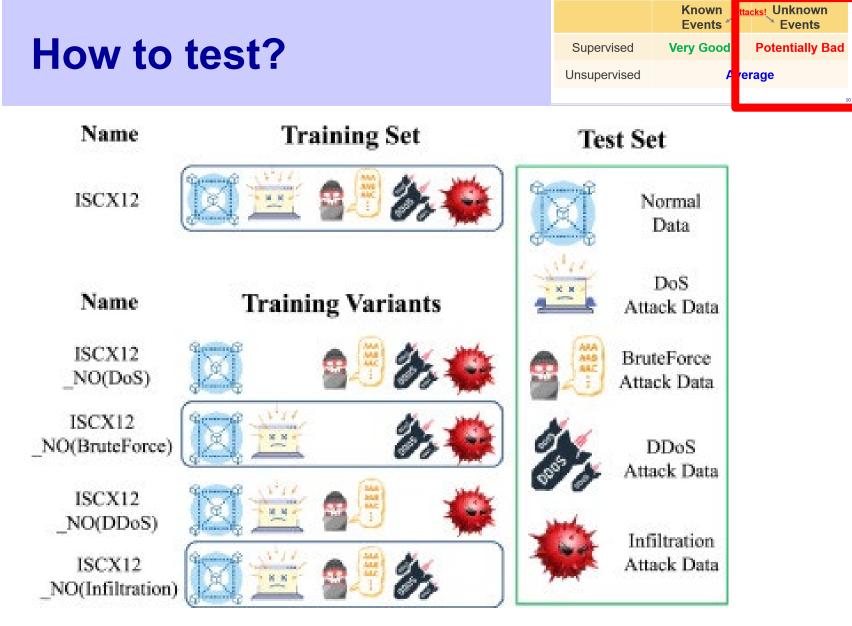
T. Zoppi, et al. "Anomaly-based error and intrusion detection in tabular data: no DNN outperforms tree-based classifiers." Future Generation Computer Systems 160 (2024): 951-965.



- 23 datasets, attacks known at training time DNN-based supervised algorithms FastAI, TabNet, NODE, GATE, ...
 - Including image-based DNNs exploiting DeepInsight
- Tree-based classifiers *Random Forests*, eXtreme Gradient Boosting (XGBoost) or Extra Trees outperform DNNs
 - -also easier to fine-tune, and understand
 - less time and resources to learn their model
- True independently on the dimension of the training set

With unknowns?

Research and Practice found ways to defend against specific attacks

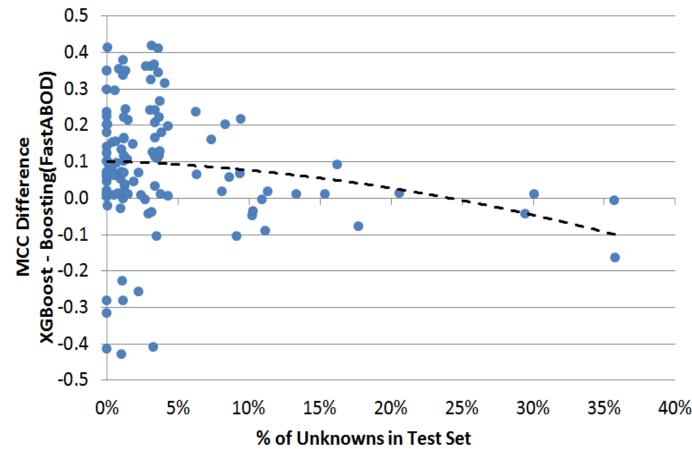

Mostly rule, signature-based or supervised (tree-based) learning

But what about with zero days, variants, ... ? No rule / signature available Anomaly detectors much less efficient

Zoppi, Tommaso, et al. "Which algorithm can detect unknown attacks? Comparison of supervised, unsupervised and meta-learning algorithms for intrusion detection." *Computers & Security* 127 (2023): 103107.

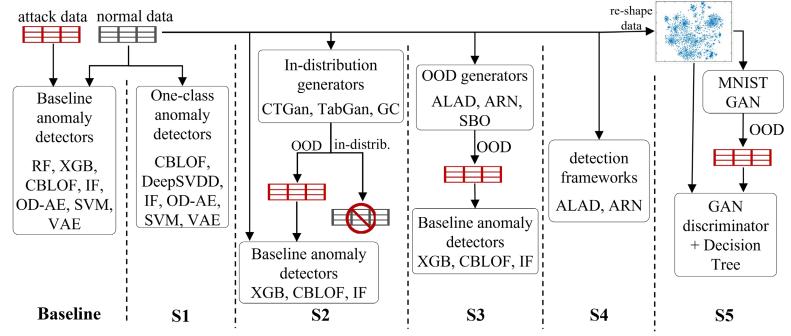
JII.	A STUD						Kno Eve		
LOREN	Data	sets V	'ariants	1		Supervised	Very G	ood Potentially Ba	b
Star FL					Unsupervise	ed	Arerage		
~	TALERST							10	
	Nieme	Veen	# Data	Features		Attacks		#	
	Name	Year	Points	Ord.	Cat.	#	%	Variants	
	ADFANet	2015	132 002	5	6	3	11.3	3	
	AndMal17	2017	100 000	77	5	4	15.5	4	
	CICIDS17	2017	500 000	77	5	5	79.7	5	
	CICIDS18	2018	200 000	77	5	8	26.2	8	
	CIDDS	2015	400 000	5	7	4	14.4	4	
	IoT-IDS	2019	210 425	8	1	8	42.3	8	
	ISCX12	2012	600 000	4	10	4	43.5	4	
	NSLKDD	2009	148 516	37	5	4	40.7	4	
	SDN20	2020	205 167	63	5	5	66.6	5	
	UGR16	2016	207 256	4	6	5	3.3	5	
	UNSW-NB15	2015	165 461	38	6	8	6.5	8	

Some of the attack datasets we used

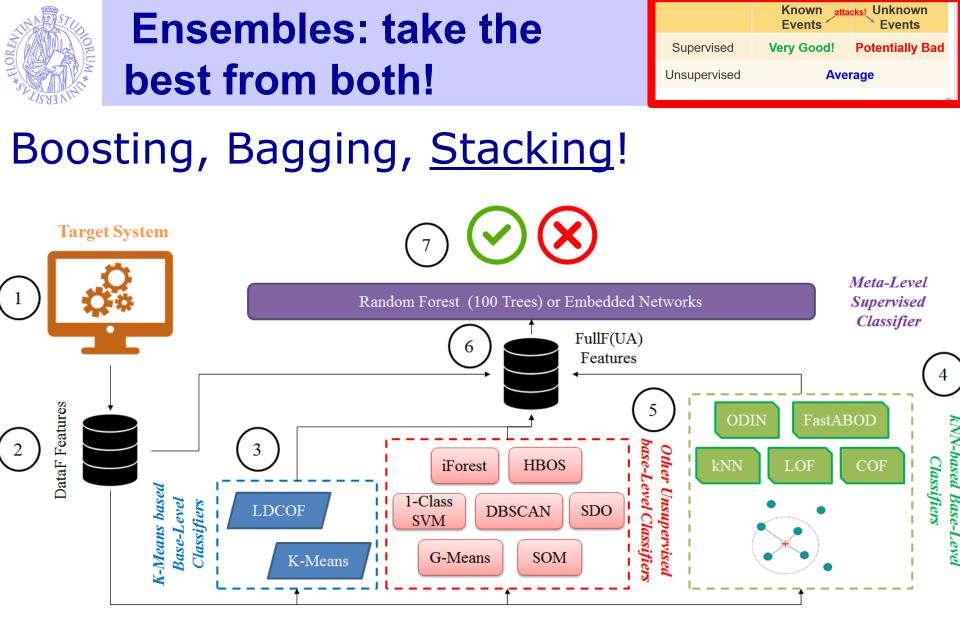

• the more attacks a dataset contains, the more variants

... and all the data!

Differences between the best supervised and unsupervised algorithm, when varying the number of unknowns



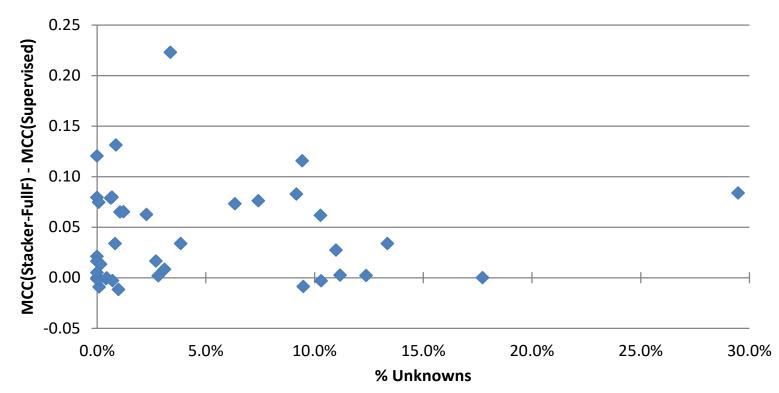
If zero knowledge?



Difficult to obtain good attack data time-consuming, expensive, incomplete, outdated, etc.

But no alternatives- aside when few easy features

A. Ceccarelli, and T. Zoppi. "Intrusion detection without attack knowledge: generating out-of-distribution tabular data." ISSRE 2023



Zoppi, T., Ceccarelli, A. (2021) "Prepare for trouble and make it double! Supervised–Unsupervised stacking for anomaly-based intrusion detection." *Journal of Network and Computer Applications* 189: 103106.

Comparison between MCC Stacker vs supervised

Each dataset, we take the best supervised algorithm

Presentation Outline

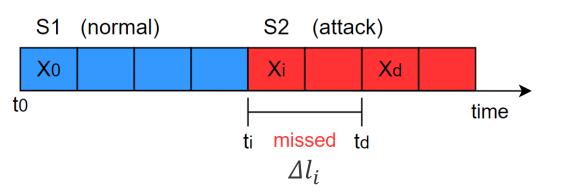
- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
 - The role of DNNs
 - Detection of unknown attacks (zero-days)
 - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats

Metrics that makes us happy!

anomaly detection and tabular data in top dependability and security venues

Paper	Venue	Metrics
Jha et al. 2022	DSN	P, R, F1, Lead Detection Time.
Wang et al. 2022	DSN	P, R, F1
Dayaratne et al. 2022	DSN	P, R,F1, FPR
Alharthi et al. 2021	DSN	P, R, F1, MCC
Yuan et al. 2021	DSN	P, R, TPR, FPR
Xu et al. 2021	DSN	P, R, F1
Zhao et al. 2019	DSN	A
Wang et al. 2022	ISSRE	P, R, F1
Zhang et al. 2021	ISSRE	P, R, F1
Jia et al. 2021	ISSRE	P, R
Zhang et al. 2021	ISSRE	P, R, F1,ROC
Alsaheel et al. 2021	USENIX	P, R F1, ROC
Chen et al. 2021	USENIX	R, avg. time
Downing et al. 2021	USENIX	P, R, FPR, ROC
Izhikevich et al. 2021	USENIX	A, proc. time
Fu et al. 2021	USENIX	P, R, FPR
Tang et al. 2021	USENIX	TPR, FPR

What is usually studied are anomalies represented by individual data points, observed in datasets composed by hours of normal concatenated with hours of attacks.

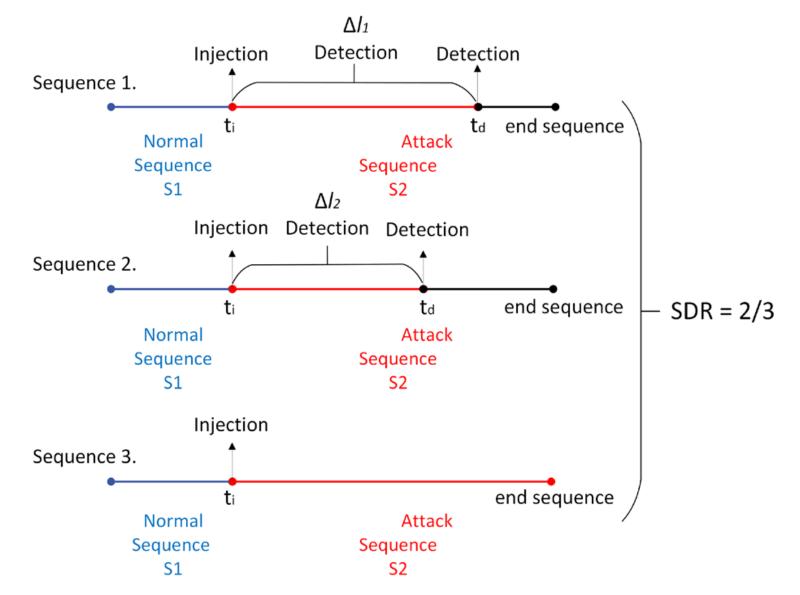


How long was the attacker into the system before being detected?

Or: given a complex attack, how long did it take to detect it?

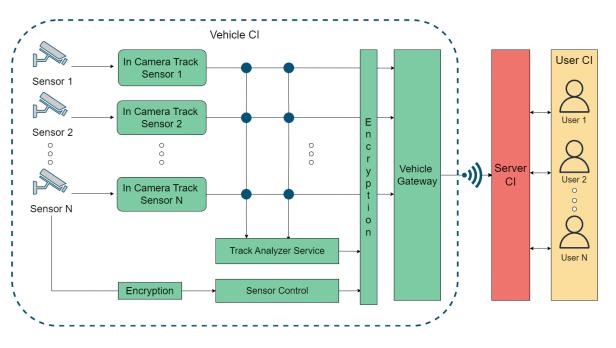
• Average Latency =
$$\Delta L = \frac{\sum_{i=0}^{N} \Delta l_i}{N}$$

Sequence Detection Rate SDR (as there is the case in which x_d never occur)

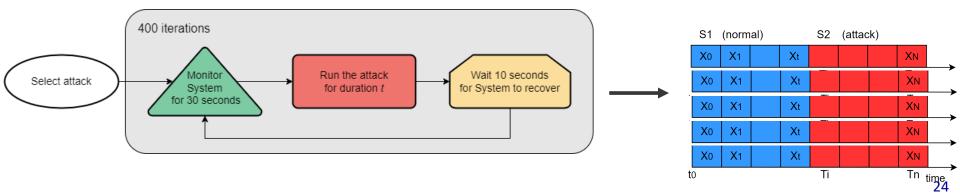


Tommaso Puccetti and Andrea Ceccarelli , Detection Latencies of Anomaly Detectors: An Overlooked Perspective?, *ISSRE 2024*

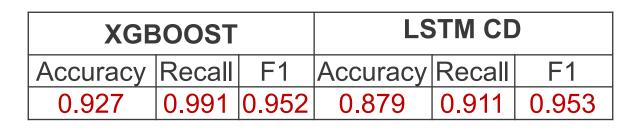
Puccetti, T., Nardi, S., Cinquilli, C., Zoppi, T., & Ceccarelli, A. (2024). ROSPaCe: Intrusion Detection Dataset for a ROS2-Based Cyber-Physical System and IoT Networks. *Scientific Data*, *11*(1), 481.

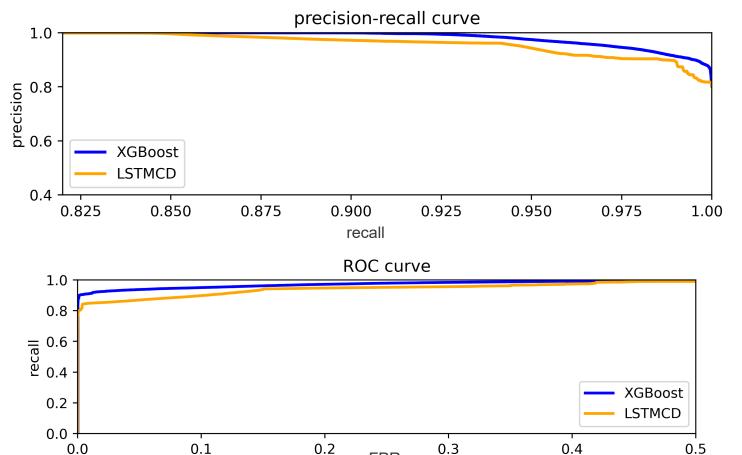


A bit more on the SDR

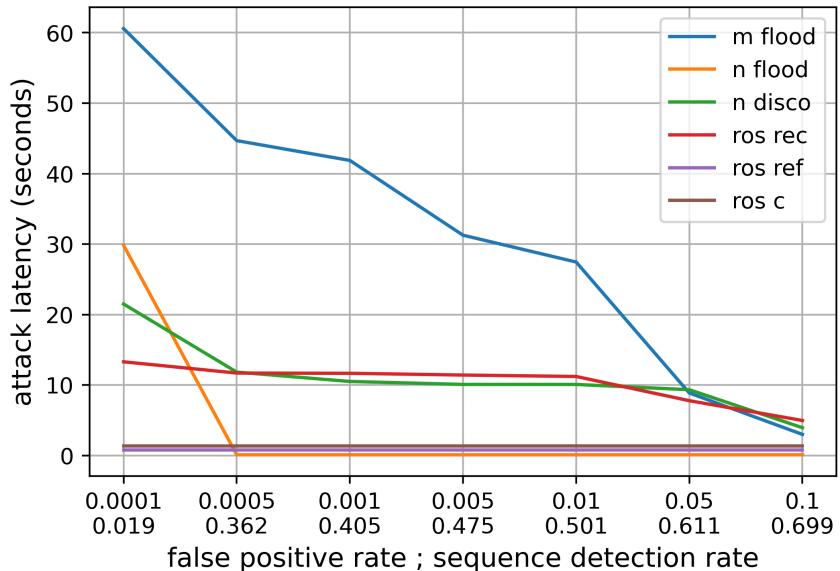


ROSPaCe data collection procedure


6 different attacks:


- 2 discovery attacks
- 4 DoS attacks

Some results: with «traditional» metrics



FPR

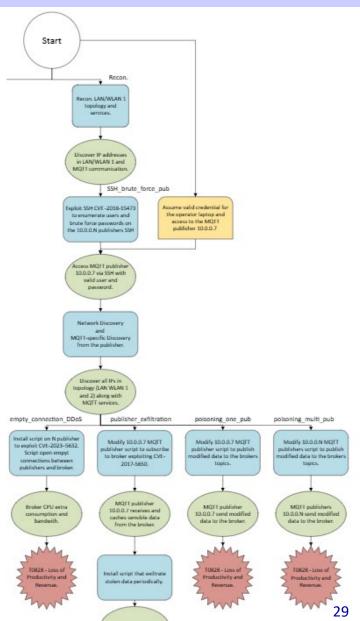
What about average latency?

XGBoost on ROSPaCe

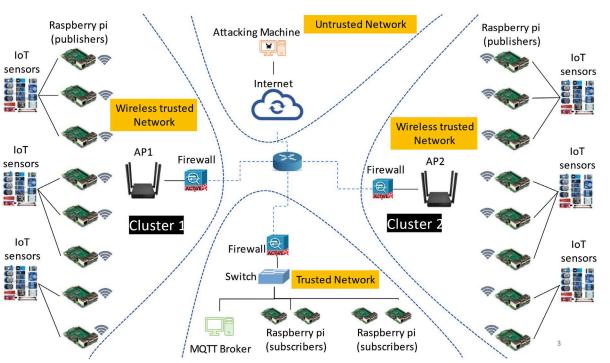
Presentation Outline

- 1. Context: why and how anomaly-based intrusion detection
- 2. Which classifier
 - The role of DNNs
 - Detection of unknown attacks (zero-days)
 - Take advantage of many: stacking
- 3. A forgotten measure: attack latency
- 4. What's next: defend against Advanced Persistent Threats

Advanced, well-financed attack campaign with a full spectrum of intelligence-gathering techniques.


- **Persistent**, from highly determined and persistent attackers. One of the attackers' goals is maintaining long-term access to the target.
- **Threats** executed by coordinated human actions rather than mindless automated code.

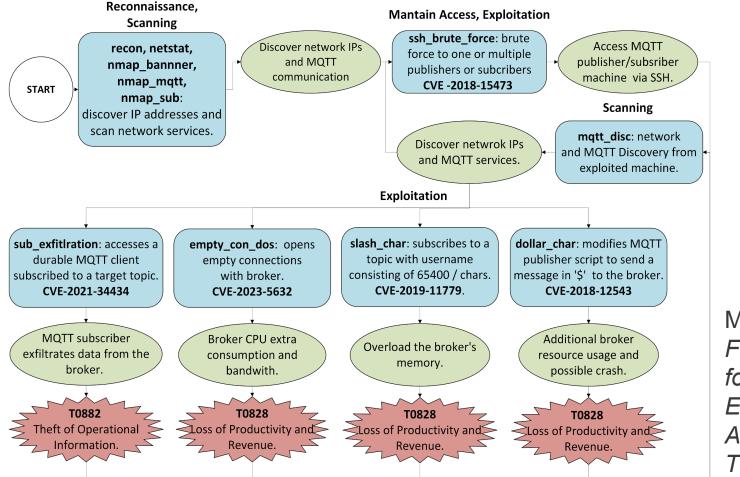
Anomaly detectors for APTs


- A shift of perspective: – not just «detect an attack», but
 - interrupt the attack path before the goal is reached
 - What is missing with respect to everything we have seen:
 - Above all, datasets!
 - Then, algorithms for time series exists (even if *maybe* not so much applied to IDS *yet*)

Let's try to build a dataset

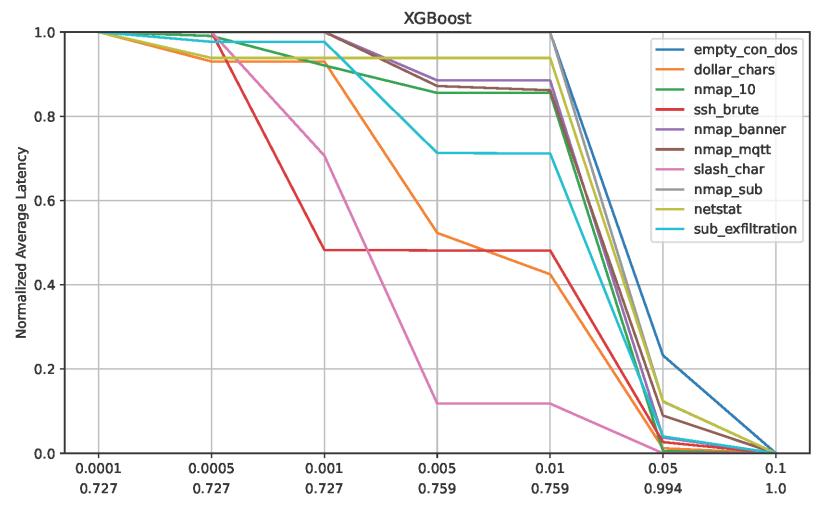
- Industrial network traffic dataset DoS/DDoS-MQTT-IoT (publish/subscribe)
- Simulate Network environment using DDoShield-IoT
 - Can replay dataset .pcap file and simulate network normal behavior <- and we can craft attack!

Alatram, Alaa, et al. "DoS/DDoS-MQTT-IoT: A dataset for evaluating intrusions in IoT networks using the MQTT protocol." *Computer Networks* 231 (2023): 109809.


De Vivo, Simona, et al. "DDoShield-IoT: A Testbed for Simulating and Lightweight Detection of IoT Botnet DDoS Attacks." 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2024.

Design and implement the attack paths

MITRE | ATT&CK°



MUR FLEGREA -Federated Learning for Generative Emulation of Advanced Persistent Threats

Train-test; analyze results

not good but just our first try

False Positive Rate ; Sequence Detection Rate

(Finally!) Wrapping Up...

(Finally!) Wrapping Up...

Anomaly-based IDS

- -(only?) alternative to the signature/rule-based model
- Promising against unknowns
- Not easy to deploy/customize –Target-specific attack datasets needed!
- And worst yet to come? – APT as the new challenge to IDSs